Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 346
1.
J Phys Chem B ; 128(4): 949-959, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38236746

The cellular compartmentation induced by self-assembly of natural proteins has recently attracted widespread attention due to its structural-functional significance. Among them, as a highly conserved metabolic enzyme and one of the potential targets for cancers and parasitic diseases in drug development, CTP synthase (CTPS) has also been reported to self-assemble into filamentous structures termed cytoophidia. To elucidate the dynamical mechanism of cytoophidium filamentation, we utilize single-molecule fluorescence imaging to observe the real-time self-assembly dynamics of CTPS and the coordinated assembly between CTPS and its interaction partner, Δ1-pyrroline-5-carboxylate synthase (P5CS). Significant differences exist in the direction of growth and extension when the two proteins self-assemble. The oligomer state distribution analysis of the CTPS minimum structural subunit under different conditions and the stoichiometry statistics of binding CTPS and P5CS by single-molecule fluorescence photobleach counting further confirm that the CTPS cytoophidia are mainly stacked with tetramers. CTPS can act as the nucleation core to induce the subsequent growth of the P5CS filaments. Our work not only provide evidence from the molecular level for the self-assembly and coordinated assembly (coassembly) of CTPS with its interaction partner P5CS in vitro but also offer new experimental perspectives for the dynamics research of coordinated regulation between other protein polymers.


Cytoskeleton , Ornithine-Oxo-Acid Transaminase , Ornithine-Oxo-Acid Transaminase/metabolism , Cytoskeleton/metabolism , Optical Imaging
2.
Nature ; 616(7956): 339-347, 2023 04.
Article En | MEDLINE | ID: mdl-36991126

There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.


Ornithine-Oxo-Acid Transaminase , Pancreatic Neoplasms , Polyamines , Animals , Humans , Mice , Arginine/deficiency , Arginine/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Ornithine/biosynthesis , Ornithine/metabolism , Ornithine-Oxo-Acid Transaminase/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Polyamines/metabolism , Tumor Microenvironment
3.
Molecules ; 28(3)2023 Jan 23.
Article En | MEDLINE | ID: mdl-36770800

Ornithine aminotransferase (OAT) is overexpressed in hepatocellular carcinoma (HCC), and we previously showed that inactivation of OAT inhibits the growth of HCC. Recently, we found that (3S,4S)-3-amino-4-fluorocyclopentenecarboxylic acid (5) was a potent inactivator of γ-aminobutyric acid aminotransferase (GABA-AT), proceeding by an enamine mechanism. Here we describe our investigations into the activity and mechanism of 5 as an inactivator of human OAT. We have found that 5 exhibits 10-fold less inactivation efficiency (kinact/KI) against hOAT than GABA-AT. A comprehensive mechanistic study was carried out to understand its inactivation mechanism with hOAT. pKa and electrostatic potential calculations were performed to further support the notion that the α,ß-unsaturated alkene of 5 is critical for enhancing acidity and nucleophilicity of the corresponding intermediates and ultimately responsible for the improved inactivation efficiency of 5 over the corresponding saturated analogue (4). Intact protein mass spectrometry and the crystal structure complex with hOAT provide evidence to conclude that 5 mainly inactivates hOAT through noncovalent interactions, and that, unlike with GABA-AT, covalent binding with hOAT is a minor component of the total inhibition which is unique relative to other monofluoro-substituted derivatives. Furthermore, based on the results of transient-state measurements and free energy calculations, it is suggested that the α,ß-unsaturated carboxylate group of PLP-bound 5 may be directly involved in the inactivation cascade by forming an enolate intermediate. Overall, compound 5 exhibits unusual structural conversions which are catalyzed by specific residues within hOAT, ultimately leading to an enamine mechanism-based inactivation of hOAT through noncovalent interactions and covalent modification.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Amino Acids/pharmacology , Enzyme Inhibitors/pharmacology , Ornithine-Oxo-Acid Transaminase/chemistry , Ornithine-Oxo-Acid Transaminase/metabolism , gamma-Aminobutyric Acid , Carboxylic Acids/pharmacology , Carboxylic Acids/chemistry , Ornithine
4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article En | MEDLINE | ID: mdl-36834788

Deficit of human ornithine aminotransferase (hOAT), a mitochondrial tetrameric pyridoxal-5'-phosphate (PLP) enzyme, leads to gyrate atrophy of the choroid and retina (GA). Although 70 pathogenic mutations have been identified, only few enzymatic phenotypes are known. Here, we report biochemical and bioinformatic analyses of the G51D, G121D, R154L, Y158S, T181M, and P199Q pathogenic variants involving residues located at the monomer-monomer interface. All mutations cause a shift toward a dimeric structure, and changes in tertiary structure, thermal stability, and PLP microenvironment. The impact on these features is less pronounced for the mutations of Gly51 and Gly121 mapping to the N-terminal segment of the enzyme than those of Arg154, Tyr158, Thr181, and Pro199 belonging to the large domain. These data, together with the predicted ΔΔG values of monomer-monomer binding for the variants, suggest that the proper monomer-monomer interactions seem to be correlated with the thermal stability, the PLP binding site and the tetrameric structure of hOAT. The different impact of these mutations on the catalytic activity was also reported and discussed on the basis of the computational information. Together, these results allow the identification of the molecular defects of these variants, thus extending the knowledge of enzymatic phenotypes of GA patients.


Gyrate Atrophy , Ornithine-Oxo-Acid Transaminase , Humans , Atrophy/pathology , Choroid/metabolism , Gyrate Atrophy/genetics , Mutation , Ornithine , Ornithine-Oxo-Acid Transaminase/metabolism , Pyridoxal Phosphate , Retina/metabolism
5.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Article En | MEDLINE | ID: mdl-36647689

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Gyrate Atrophy , Retinal Degeneration , Animals , Mice , Gyrate Atrophy/genetics , Gyrate Atrophy/pathology , Ornithine-Oxo-Acid Transaminase/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Ornithine/genetics , Ornithine/metabolism , Genetic Therapy , Liver/pathology
6.
J Biol Chem ; 298(6): 101969, 2022 06.
Article En | MEDLINE | ID: mdl-35460691

Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and occurs predominantly in patients with underlying chronic liver diseases. Over the past decade, human ornithine aminotransferase (hOAT), which is an enzyme that catalyzes the metabolic conversion of ornithine into an intermediate for proline or glutamate synthesis, has been found to be overexpressed in HCC cells. hOAT has since emerged as a promising target for novel anticancer therapies, especially for the ongoing rational design effort to discover mechanism-based inactivators (MBIs). Despite the significance of hOAT in human metabolism and its clinical potential as a drug target against HCC, there are significant knowledge deficits with regard to its catalytic mechanism and structural characteristics. Ongoing MBI design efforts require in-depth knowledge of the enzyme active site, in particular, pKa values of potential nucleophiles and residues necessary for the molecular recognition of ligands. Here, we conducted a study detailing the fundamental active-site properties of hOAT using stopped-flow spectrophotometry and X-ray crystallography. Our results quantitatively revealed the pH dependence of the multistep reaction mechanism and illuminated the roles of ornithine α-amino and δ-amino groups in substrate recognition and in facilitating catalytic turnover. These findings provided insights of the catalytic mechanism that could benefit the rational design of MBIs against hOAT. In addition, substrate recognition and turnover of several fragment-sized alternative substrates of hOATs, which could serve as structural templates for MBI design, were also elucidated.


Ornithine-Oxo-Acid Transaminase/metabolism , Carcinoma, Hepatocellular , Crystallography, X-Ray , Humans , Hydrogen-Ion Concentration , Kinetics , Liver Neoplasms , Models, Molecular , Ornithine/chemistry , Ornithine-Oxo-Acid Transaminase/chemistry , Substrate Specificity
7.
Protoplasma ; 259(6): 1507-1520, 2022 Nov.
Article En | MEDLINE | ID: mdl-35277781

Glutamic acid (Glu) is not only an important protein building block, but also a signaling molecule in plants. However, the Glu-boosted thermotolerance and its underlying mechanisms in plants still remain unclear. In this study, the maize seedlings were irrigated with Glu solution prior to exposure to heat stress (HS), the seedlings' thermotolerance as well as osmoregulation, glyoxalase, and non-glyoxalase systems were evaluated. The results manifested that the seedling survival and tissue vitality after HS were boosted by Glu, while membrane damage was reduced in comparison with the control seedlings without Glu treatment, indicating Glu boosted the thermotolerance of maize seedlings. Additionally, root-irrigation with Glu increased its endogenous level, reinforced osmoregulation system (i.e., an increase in the levels of proline, glycine betaine, trehalose, and total soluble sugar, as well as the activities of pyrroline-5-carboxylate synthase, betaine dehydrogenase, and trehalose-5-phosphate phosphatase) in maize seedlings under non-HS and HS conditions compared with the control. Also, Glu treatment heightened endogenous methylglyoxal level and the activities of glyoxalase system (glyoxalase I, glyoxalase II, and glyoxalase III) and non-glyoxalase system (methylglyoxal reductase, lactate dehydrogenase, aldo-ketoreductase, and alkenal/alkenone reductase) in maize seedlings under non-HS and HS conditions as compared to the control. These data hint that osmoregulation, glyoxalase, and non-glyoxalase systems are involved in signaling molecule Glu-boosted thermotolerance of maize seedlings.


Lactoylglutathione Lyase , Thermotolerance , Betaine/metabolism , Glutamic Acid/metabolism , Lactate Dehydrogenases/metabolism , Lactoylglutathione Lyase/metabolism , Ornithine-Oxo-Acid Transaminase/metabolism , Osmoregulation , Oxidoreductases/metabolism , Phosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Proline/metabolism , Pyruvaldehyde , Seedlings/metabolism , Trehalose/metabolism , Zea mays/metabolism
8.
Virology ; 566: 16-25, 2022 01.
Article En | MEDLINE | ID: mdl-34844082

Chronic HBV infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The phenotypes of HCC are diverse, in part, due to mutations in distinct oncogenes and/or tumor suppressor genes. These genetic drivers of HCC development have generally been considered as major mediators of tumor heterogeneity. Using the liver-specific Pten-null HBV transgenic mouse model of chronic viral infection, a critical role for liver lobule zone-specific gene expression patterns in determining HCC phenotype and ß-catenin-dependent HBV biosynthesis is demonstrated. These observations suggest that the position of the hepatocyte within the liver lobule, and hence its intrinsic gene expression pattern at the time of cellular transformation, make critical contributions to the properties of the resulting liver tumor. These results may explain why therapies targeting pathways modulated by specific identified tumor driver genes display variable treatment efficacy.


Carcinoma, Hepatocellular/genetics , Cell Transformation, Neoplastic/genetics , Hepatitis B virus/genetics , Hepatitis B/genetics , Hepatocytes/metabolism , Liver Neoplasms/genetics , beta Catenin/genetics , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Cell Transformation, Neoplastic/metabolism , Female , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Hepatitis B/metabolism , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/metabolism , Hepatitis B virus/pathogenicity , Hepatocytes/virology , Hepcidins/genetics , Hepcidins/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lipocalin-2/genetics , Lipocalin-2/metabolism , Liver/metabolism , Liver/virology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/virology , Male , Mice , Mice, Transgenic , Ornithine-Oxo-Acid Transaminase/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phenotype , Signal Transduction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Virus Replication , beta Catenin/metabolism
9.
Toxins (Basel) ; 13(12)2021 12 18.
Article En | MEDLINE | ID: mdl-34941746

Activation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis. Among the seven protein-bound uremic toxins, only indoxyl sulfate (IS) caused significant activation of mTORC1 in human kidney 2 cells (HK-2 cells). This IS-induced mTORC1 activation was inhibited in the presence of an organic anion transporter inhibitor, a NADPH oxidase inhibitor, and an antioxidant. IS also induced epithelial-mesenchymal transition of tubular epithelial cells (HK-2 cells), differentiation of fibroblasts into myofibroblasts (NRK-49F cells), and inflammatory response of macrophages (THP-1 cells), which are associated with renal fibrosis, and these effects were inhibited in the presence of rapamycin (mTORC1 inhibitor). In in vivo experiments, IS overload was found to activate mTORC1 in the mouse kidney. The administration of AST-120 or rapamycin targeted to IS or mTORC1 ameliorated renal fibrosis in Adenine-induced CKD mice. The findings reported herein indicate that IS activates mTORC1, which then contributes to renal fibrosis. Therapeutic interventions targeting IS and mTORC1 could be effective against renal fibrosis in CKD.


Fibrosis/chemically induced , Indican/pharmacology , Kidney Diseases/metabolism , Mechanistic Target of Rapamycin Complex 1/pharmacology , NADPH Oxidases/metabolism , Ornithine-Oxo-Acid Transaminase/metabolism , Cell Line , Epithelial Cells/drug effects , Fibroblasts/drug effects , Gene Expression Regulation/drug effects , Humans , Kidney Tubules/cytology , Macrophages/drug effects , NADPH Oxidases/genetics , Ornithine-Oxo-Acid Transaminase/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
10.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article En | MEDLINE | ID: mdl-34769188

Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)-the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.


Apoptosis , Proline/metabolism , Pyrroles/metabolism , Amino Acids/metabolism , Animals , Cell Survival , Humans , Ornithine-Oxo-Acid Transaminase/metabolism
11.
Int J Mol Sci ; 22(17)2021 Sep 04.
Article En | MEDLINE | ID: mdl-34502515

Free proline has multiple functions in plant cells, such as regulating osmotic potential and protecting both proteins and cell membranes. The expression of Δ1-Pyrroline-5-carboxylate synthase (P5CS), a key enzyme in the proline biosynthetic pathway, increases under drought, salt and cold stress conditions, causing plant cells to accumulate large amounts of proline. In this study, we cloned and identified the P5CS gene from Stipa purpurea, which has a full-length of 2196 bp and encodes 731 amino acids. A subcellular localization analysis indicated that SpP5CS localized to the cytoplasm. The ectopic overexpression of SpP5CS in Arabidopsis thaliana resulted in higher proline contents, longer roots, higher survival rates and less membrane damage under drought stress conditions compared with wild-type controls. SpP5CS-overexpressing A. thaliana was more resistant to drought stress than the wild type, whereas the deletion mutant sp5cs was less resistant to drought stress. Thus, SpP5CS may be a potential candidate target gene for increasing plant resistance to drought stress.


Ornithine-Oxo-Acid Transaminase/genetics , Poaceae/genetics , Stress, Physiological/genetics , Droughts , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Poaceae/metabolism , Proline/metabolism
12.
J Am Chem Soc ; 143(23): 8689-8703, 2021 06 16.
Article En | MEDLINE | ID: mdl-34097381

The inhibition of human ornithine δ-aminotransferase (hOAT) is a potential therapeutic approach to treat hepatocellular carcinoma. In this work, (S)-3-amino-4,4-difluorocyclopent-1-enecarboxylic acid (SS-1-148, 6) was identified as a potent mechanism-based inactivator of hOAT while showing excellent selectivity over other related aminotransferases (e.g., GABA-AT). An integrated mechanistic study was performed to investigate the turnover and inactivation mechanisms of 6. A monofluorinated ketone (M10) was identified as the primary metabolite of 6 in hOAT. By soaking hOAT holoenzyme crystals with 6, a precursor to M10 was successfully captured. This gem-diamine intermediate, covalently bound to Lys292, observed for the first time in hOAT/ligand crystals, validates the turnover mechanism proposed for 6. Co-crystallization yielded hOAT in complex with 6 and revealed a novel noncovalent inactivation mechanism in hOAT. Native protein mass spectrometry was utilized for the first time in a study of an aminotransferase inactivator to validate the noncovalent interactions between the ligand and the enzyme; a covalently bonded complex was also identified as a minor form observed in the denaturing intact protein mass spectrum. Spectral and stopped-flow kinetic experiments supported a lysine-assisted E2 fluoride ion elimination, which has never been observed experimentally in other studies of related aminotransferase inactivators. This elimination generated the second external aldimine directly from the initial external aldimine, rather than the typical E1cB elimination mechanism, forming a quinonoid transient state between the two external aldimines. The use of native protein mass spectrometry, X-ray crystallography employing both soaking and co-crystallization methods, and stopped-flow kinetics allowed for the detailed elucidation of unusual turnover and inactivation pathways.


Ornithine-Oxo-Acid Transaminase/metabolism , Humans , Molecular Structure , Ornithine-Oxo-Acid Transaminase/chemistry
13.
J Am Chem Soc ; 143(21): 8193-8207, 2021 06 02.
Article En | MEDLINE | ID: mdl-34014654

Human ornithine aminotransferase (hOAT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that was recently found to play an important role in the metabolic reprogramming of hepatocellular carcinoma (HCC) via the proline and glutamine metabolic pathways. The selective inhibition of hOAT by compound 10 exhibited potent in vivo antitumor activity. Inspired by the discovery of the aminotransferase inactivator (1S,3S)-3-amino-4-(difluoromethylene)cyclopentane-1-carboxylic acid (5), we rationally designed, synthesized, and evaluated a series of six-membered-ring analogs. Among them, 14 was identified as a new selective hOAT inactivator, which demonstrated a potency 22× greater than that of 10. Three different types of protein mass spectrometry approaches and two crystallographic approaches were employed to identify the structure of hOAT-14 and the formation of a remarkable final adduct (32') in the active site. These spectral studies reveal an enzyme complex heretofore not observed in a PLP-dependent enzyme, which has covalent bonds to two nearby residues. Crystal soaking experiments and molecular dynamics simulations were carried out to identify the structure of the active-site intermediate 27' and elucidate the order of the two covalent bonds that formed, leading to 32'. The initial covalent reaction of the activated warhead occurs with *Thr322 from the second subunit, followed by a subsequent nucleophilic attack by the catalytic residue Lys292. The turnover mechanism of 14 by hOAT was supported by a mass spectrometric analysis of metabolites and fluoride ion release experiments. This novel mechanism for hOAT with 14 will contribute to the further rational design of selective inactivators and an understanding of potential inactivation mechanisms by aminotransferases.


Enzyme Inhibitors/pharmacology , Ornithine-Oxo-Acid Transaminase/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Kinetics , Mass Spectrometry , Models, Molecular , Molecular Structure , Ornithine-Oxo-Acid Transaminase/metabolism
14.
Cell Death Differ ; 28(1): 303-319, 2021 01.
Article En | MEDLINE | ID: mdl-32770108

Pyrroline-5-carboxylate synthase (P5CS) catalyzes the synthesis of pyrroline-5-carboxylate (P5C), a key precursor for the synthesis of proline and ornithine. P5CS malfunction leads to multiple human diseases; however, the molecular mechanism underlying these diseases is unknown. We found that P5CS localizes in mitochondria in rod- and ring-like patterns but diffuses inside the mitochondria upon cellular starvation or exposure to oxidizing agents. Some of the human disease-related mutant forms of P5CS also exhibit diffused distribution. Multimerization (but not the catalytic activity) of P5CS regulates its localization. P5CS mutant cells have a reduced proliferation rate and are sensitive to cellular stresses. Flies lacking P5CS have reduced eclosion rates. Lipid droplets accumulate in the eyes of the newly eclosed P5CS mutant flies, which degenerate with aging. The loss of P5CS in cells leads to abnormal purine metabolism and lipid-droplet accumulation. The reduced lipid-droplet consumption is likely due to decreased expression of the fatty acid transporter, CPT1, and few ß-oxidation-related genes following P5CS knockdown. Surprisingly, we found that P5CS is required for mitochondrial respiratory complex organization and that the respiration defects in P5CS knockout cells likely contribute to the metabolic defects in purine synthesis and lipid consumption. This study links amino acid synthesis with mitochondrial respiration and other key metabolic processes, whose imbalance might contribute to P5CS-related disease conditions.


Mitochondria/metabolism , Ornithine-Oxo-Acid Transaminase/metabolism , Animals , Drosophila , HeLa Cells , Humans , Mitochondrial Dynamics , Ornithine/biosynthesis , Ornithine-Oxo-Acid Transaminase/genetics , Proline/biosynthesis
15.
Plant Physiol Biochem ; 155: 105-113, 2020 Oct.
Article En | MEDLINE | ID: mdl-32745929

An investigation was conducted to assess proline anabolism and catabolism pathway genes under drought stress. Treatments were irrigation in three levels (25, 50 and 100% field capacity) at 1, 3, 6 and 12 d and two rose species (Rosa canina L. and Rosa damascene Mill.). The results showed that the potential for proline accumulation in R. damascena was higher than R. canina under drought. Simultaneous with proline accumulation, expression of P5CS and P5CR genes increased from 1 to 12 d under 50% FC whereas their expression had an increasing trends from 1 to 6 d at 25% FC and expression of both genes decreased at 12 d in both species. The highest accumulation of proline was observed under 25% FC at 12 d, but expression of genes involved in proline synthesis main pathway decreased on this day. Furthermore, expression of genes (PDH and P5CDH) involved in proline catabolism pathway decreased in 50% FC from 1 to 12 d while their expression remarkably decreased from 1 to 6 d and increased at 12 d under 25% FC. These findings showed that under conditions of 50 and 25% FC, arginine accumulation resulted in the increased expression of the ARG gene, which led to ornithine production. Furthermore, ornithine accumulation increased OAT expression. Therefore, it seems that OAT-induced P5C is transported from the mitochondria to the cytosol and reduced to proline by the P5CR.


Droughts , Proline/metabolism , Rosa/genetics , Stress, Physiological , Genes, Plant , Ornithine-Oxo-Acid Transaminase/metabolism , Rosa/metabolism
16.
ACS Synth Biol ; 9(7): 1855-1863, 2020 07 17.
Article En | MEDLINE | ID: mdl-32551572

l-Proline takes a significant role in the pharmaceutical and chemical industries as well as graziery. Typical biosynthesis of l-proline is from l-glutamate, involving three enzyme reactions as well as a spontaneous cyclization. Alternatively, l-proline can be also synthesized in l-ornithine and/or l-arginine producing strains by an ornithine aminotransferase (OCD). In this study, a strategy of directed evolution combining rare codon selection and pEvolvR was developed to screen OCD with high catalytic efficiency, improving l-proline production from l-arginine chassis cells. The mutations were generated by CRISPR-assisted DNA polymerases and were screened by growth-coupled rare codon selection system. OCDK205G/M86K/T162A from Pseudomonas putida was identified with 2.85-fold increase in catalytic efficiency for the synthesis of l-proline. Furthermore, we designed and optimized RBS for the BaargI and Ppocd coupling cascade using RedLibs, as well as sRNA inhibition of argF to moderate l-proline biosynthesis in l-arginine overproducing Corynebacterium crenatum. The strain PS6 with best performance reached 15.3 g/L l-proline in the shake flask and showed a titer of 38.4 g/L in a 5 L fermenter with relatively low concentration of residual l-ornithine and/or l-arginine.


Corynebacterium/enzymology , Corynebacterium/genetics , Directed Molecular Evolution/methods , Ornithine-Oxo-Acid Transaminase/metabolism , Proline/biosynthesis , Pseudomonas putida/enzymology , Pseudomonas putida/genetics , Ammonia-Lyases , Arginine/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Codon , DNA-Directed DNA Polymerase , Metabolic Engineering/methods , Mutant Proteins/metabolism , Mutation , Ornithine/biosynthesis , Ornithine-Oxo-Acid Transaminase/genetics , Plasmids/genetics
17.
Cancer Med ; 9(16): 5767-5780, 2020 08.
Article En | MEDLINE | ID: mdl-32590878

While pregnancy may accelerate glioblastoma multiforme (GBM) growth, parity and progesterone (P4) containing treatments (ie, hormone replacement therapy) reduce the risk of GBM development. In parallel, low and high doses of P4 exert stimulating and inhibitory actions on GBM growth, respectively. The mechanisms behind the high-dose P4-suppression of GBM growth is unknown. In the present study, we assessed the changes in growth and proteomic profiles when high-dose P4 (100 and 300 µM) was administered in human U87 and A172 GBM cell lines. The xCELLigence system was used to examine cell growth when different concentrations of P4 (20, 50, 100, and 300 µM) was administered. The protein profiles were determined by two-dimensional gel electrophoresis in both cell lines when 100 and 300 µM P4 were administered. Finally, the pathways enriched by the differentially expressed proteins were assessed using bioinformatic tools. Increasing doses of P4 blocked the growth of both GBM cells. We identified 26 and 51 differentially expressed proteins (fc > 2) in A172 and U87 cell lines treated with P4, respectively. Only the pro-tumorigenic mitochondrial ornithine aminotransferase and anti-apoptotic mitochondrial 60 kDa heat shock protein were downregulated in A172 cell line and U87 cell line when treated with P4, respectively. Detoxification of reactive oxygen species, cellular response to stress, glucose metabolism, and immunity-related proteins were altered in P4-treated GBM cell lines. The paradox on the effect of low and high doses of P4 on GBM growth is gaining attention. The mechanism related to the high dose of P4 on GBM growth can be explained by the alterations in detoxification mechanisms, stress, and immune response and glucose metabolism. P4 suppresses GBM growth and as it is nontoxic in comparison to classical chemotherapeutics, it can be used as a new strategy in GBM treatment in the future.


Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplasm Proteins/metabolism , Progesterone/administration & dosage , Progestins/administration & dosage , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chaperonin 60/metabolism , Computational Biology , Down-Regulation , Glioblastoma/immunology , Glioblastoma/metabolism , Glioblastoma/pathology , Glucose/metabolism , Humans , Neoplasm Proteins/analysis , Ornithine-Oxo-Acid Transaminase/metabolism , Progesterone/pharmacology , Progestins/pharmacology , Proteomics , Reactive Oxygen Species/metabolism
18.
ACS Synth Biol ; 9(7): 1864-1872, 2020 07 17.
Article En | MEDLINE | ID: mdl-32470293

Chinese hamster ovary (CHO) cells are the superior host cell culture models used for the bioproduction of therapeutic proteins. One of the prerequisites for bioproduction using CHO cell lines is the need to generate stable CHO cell lines with optimal expression output. Antibiotic selection is commonly employed to isolate and select CHO cell lines with stable expression, despite its potential negative impact on cellular metabolism and expression level. Herein, we present a novel proline-based selection system for the isolation of stable CHO cell lines. The system exploits a dysfunctional proline metabolism pathway in CHO cells by using a pyrroline-5-carboxylate synthase gene as a selection marker, enabling selection to be made using proline-free media. The selection system was demonstrated by expressing green fluorescent protein (GFP) and a monoclonal antibody. When GFP was expressed, more than 90% of stable transfectants were enriched within 2 weeks of the selection period. When a monoclonal antibody was expressed, we achieved comparable titers (3.35 ± 0.47 µg/mL) with G418 and Zeocin-based selections (1.65 ± 0.46 and 2.25 ± 0.07 µg/mL, respectively). We further developed a proline-based coselection by using S. cerevisiae PRO1 and PRO2 genes as markers, which enables the generation of 99.5% double-transgenic cells. The proline-based selection expands available selection tools and provides an alternative to antibiotic-based selections in CHO cell line development.


Metabolic Engineering/methods , Proline/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Aldehyde Dehydrogenase/deficiency , Aldehyde Dehydrogenase/genetics , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/genetics , CHO Cells , Cricetulus , Culture Media/chemistry , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Ornithine-Oxo-Acid Transaminase/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , Phosphotransferases (Carboxyl Group Acceptor)/genetics , Plasmids/genetics , Recombinant Proteins/biosynthesis , Transfection
19.
J Am Chem Soc ; 142(10): 4892-4903, 2020 03 11.
Article En | MEDLINE | ID: mdl-32114761

Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate-dependent enzyme, plays a critical role in the progression of hepatocellular carcinoma (HCC). Pharmacological selective inhibition of hOAT has been shown to be a potential therapeutic approach for HCC. Inspired by the discovery of the nonselective aminotransferase inactivator (1R,3S,4S)-3-amino-4-fluoro cyclopentane-1-carboxylic acid (1), in this work, we rationally designed, synthesized, and evaluated a novel series of fluorine-substituted cyclohexene analogues, thereby identifying 8 and 9 as novel selective hOAT time-dependent inhibitors. Intact protein mass spectrometry and protein crystallography demonstrated 8 and 9 as covalent inhibitors of hOAT, which exhibit two distinct inactivation mechanisms resulting from the difference of a single fluorine atom. Interestingly, they share a similar turnover mechanism, according to the mass spectrometry-based analysis of metabolites and fluoride ion release experiments. Molecular dynamics (MD) simulations and electrostatic potential (ESP) charge calculations were conducted, which elucidated the significant influence of the one-fluorine difference on the corresponding intermediates, leading to two totally different inactivation pathways. The novel addition-aromatization inactivation mechanism for 9 contributes to its significantly enhanced potency, along with excellent selectivity over other aminotransferases.


Cyclohexanecarboxylic Acids/chemistry , Cyclohexylamines/chemistry , Enzyme Inhibitors/chemistry , Hydrocarbons, Fluorinated/chemistry , Ornithine-Oxo-Acid Transaminase/antagonists & inhibitors , Cyclohexanecarboxylic Acids/chemical synthesis , Cyclohexanecarboxylic Acids/metabolism , Cyclohexylamines/chemical synthesis , Cyclohexylamines/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Humans , Hydrocarbons, Fluorinated/chemical synthesis , Hydrocarbons, Fluorinated/metabolism , Models, Chemical , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Ornithine-Oxo-Acid Transaminase/chemistry , Ornithine-Oxo-Acid Transaminase/metabolism , Protein Binding , Pyridoxal Phosphate/chemistry , gamma-Aminobutyric Acid/analogs & derivatives
20.
Plant Cell Rep ; 39(5): 567-575, 2020 May.
Article En | MEDLINE | ID: mdl-32025801

KEY MESSAGE: NADPH oxidase-mediated H2O2 maintains proline concentration under NaCl stress through regulating its biosynthesis and degradation, conferring salt tolerance to wheat plants. Considerable attention has been paid to the specific role of hydrogen peroxide (H2O2) in plant stress responses. Here, using microscopic, pharmacological and biochemical approaches, we explored H2O2 production and its roles in redox control under salt stress in wheat roots. Exogenous H2O2 pretreatment decreased salt-induced lipid peroxidation, while increased proline content in wheat roots. Salt stress led to a transient increase in NADPH oxidase activity accompanied by accumulation of H2O2 and proline in roots. The elevated proline accumulation in the presence of NaCl was significantly suppressed by diphenyleneiodonium, an inhibitor of NADPH oxidase, and dimethylthiourea, a scavenger of H2O2. The rate-limiting enzyme involved in proline biosynthesis, Δ1-pyrroline-5-carboxylate synthetase (P5CS), was induced by NaCl, whereas the house-keeping enzyme in proline degradation, proline dehydrogenase (ProDH), was inhibited. After 6 h, the activity of P5CS increased by 1.5-fold, whereas ProDH decreased by 13.9%. The levels of these enzymes, however, were restored by NADPH oxidase inhibitor or H2O2 scavenger. After treatment with H2O2, the effects of diphenyleneiodonium and or dimethylthiourea on proline content and activities of P5CS and ProDH were reversed. These results suggested that NADPH oxidase-mediated H2O2 alleviates oxidative damage induced by salt stress through regulating proline biosynthesis and degradation.


Hydrogen Peroxide/pharmacology , NADPH Oxidases/antagonists & inhibitors , Plant Roots/metabolism , Proline/metabolism , Salt Stress/drug effects , Seedlings/metabolism , Triticum/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane/pathology , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , NADPH Oxidases/metabolism , Onium Compounds/pharmacology , Ornithine-Oxo-Acid Transaminase/metabolism , Plant Roots/drug effects , Proline Oxidase/metabolism , Salinity , Salt Stress/physiology , Salt Tolerance/drug effects , Salt Tolerance/physiology , Seedlings/drug effects , Seedlings/enzymology , Thiourea/analogs & derivatives , Thiourea/pharmacology , Triticum/drug effects , Triticum/enzymology
...